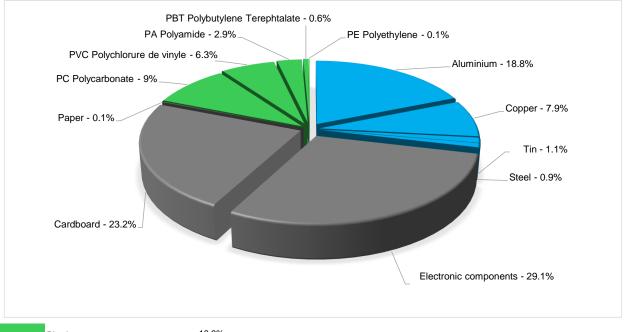

Product Environmental Profile

Easy PDU


ENVPEP2412049_V2 07/2025

General information									
Reference product	Easy PDU Metered Zero U 32A 230V (20)C13 (4)C19 IEC309 - EPDU2132M								
Description of the product	Easy PDU provides reliable rack power distribution units that offer more than a power strip for server rack and network rack solutions.								
Description of the range	The environmental impacts of this reference product are representative of the impacts of the other products of the range which are developed with a similar technology. The products of the range are: Easy Rack PDU EPDU2016M EPDU2016S EPDU2116M EPDU2116S EPDU2132M EPDU2132S EPDU2216M EPDU2216S EPDU2232M EPDU2232S EPDU2232SX3620 EPDU2232SX2423 EPDU2232SX3623								
Functional unit	To provide rack power distribution via a IEC60309 L+N+PE inlet with 20 C13 and 4C19 outlets and distributes power up to 1-phase 32A. And to provide active metering of PDU outlets to enable energy optimization, during 10 years.								

Constituent materials

Reference product mass

4350 g including the product, its packaging, additional elements and accessories

Plastics 18.9%
Metals 28.7%
Others 52.4%

Substance assessment

RoHS compliance

Products of this range are designed in conformity with the requirements of the RoHS directive (European Directive 2011/65/EU of 8 June 2011) on restriction of lead, mercury, cadmium, hexavalent chromium or flame retardants -PBB&PBDE or phthalates-DEHP, BBP, DBP, DIBP.

REACH compliance

Products of this range are designed in conformity with the requirements of the REACH 1907/2006 regulation and its latest updates.

Battery Directive compliance

The battery within this product range are designed in conformity with the requirements of the Battery and Accumulator Directive (European Directive 2006/66/EC of 26 September 2006).

Details of ROHS and REACH substances information are available on the Schneider-Electric website

https://www.se.com

ENVPEP2412049 V2 07/2025

(19) Additional environmental information

End Of Life

Recyclability potential:

45%

The recyclability rate was calculated from the recycling rates of each material making up the product based on REEECY'LAB tool developed by Ecosystem, for components/materials not covered by the tool, data from the EIME database and the related PSR was taken. If no data was found a conservative assumption was used (0% recyclability).

Environmental impacts

Reference service life time	10 years									
Product category	Combinations of functions									
Life cycle of the product	The manufacturing, the distribution, the installation	on, the use and the end of life w	vere taken into consideration in the	his study						
Electricity consumtion	The electricity consumed during manufacturing properties a negligable consumption	processes is considered for each	h part of the product individually	, the final assembly						
Installation elements	This product does not require any installation ope	erations.								
Use scenario	The product is in 50% load mode of the 100% tin	ne with a power use of 20.9W f	or 10 years.							
Time representativeness	The collected data are representative of the year 2025									
Technological representativeness	The Modules of Technologies such as material production, manufacturing processes and transport technology used in the PEP analysis (LCA EIME in the case) are Similar and représentaive of the actual type of technologies used to make the product.									
Geographical	Final assembly site Use phase End-of-life									
representativeness	China Europe Europe									
	[A1 - A3] [A5] [B6] [C1 -									
Energy model used	Electricity Mix; Low voltage; 2020; China, CN	No energy used Electricity Mix; Low voltage 2020; Europe, EU-27		Global, European and French datasets are used.						

Detailed results of the optional indicators mentioned in PCRed4 are available in the LCA report and on demand in a digital format - Country Customer Care Center - http://www.se.com/contact

The calculation result is scientific counting method. For example, 1.37E+06=1.37*10^6=1370000, 1.64E-04=1.64*10^(-4)=0.000164

Mandatory Indicators	Easy PDU Metered Zero U 32A 230V (20)C13 (4)C19 IEC309 - EPDU2132M									
Impact indicators	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to climate change	kg CO2 eq	8.06E+02	4.78E+01	8.62E+00	2.43E+00	7.40E+02	7.04E+00	-5.20E+00		
Contribution to climate change-fossil	kg CO2 eq	7.88E+02	4.74E+01	8.62E+00	1.14E+00	7.24E+02	7.03E+00	-6.23E+00		
Contribution to climate change-biogenic	kg CO2 eq	1.80E+01	4.03E-01	0*	1.29E+00	1.63E+01	1.21E-02	1.03E+00		
Contribution to climate change-land use and land use change	kg CO2 eq	6.29E-04	6.28E-04	0*	0*	0*	7.48E-07	0.00E+00		
Contribution to ozone depletion	kg CFC-11 eq	2.23E-05	1.14E-05	7.58E-06	1.47E-08	3.17E-06	1.07E-07	-1.62E-06		
Contribution to acidification	mol H+ eq	4.34E+00	4.16E-01	3.55E-02	3.34E-03	3.87E+00	1.64E-02	-1.30E-01		
Contribution to eutrophication, freshwater	kg P eq	2.05E-03	2.42E-04	1.01E-06	2.44E-05	1.77E-03	1.33E-05	-2.95E-05		
Contribution to eutrophication, marine	kg N eq	5.24E-01	4.93E-02	1.61E-02	1.45E-03	4.53E-01	3.89E-03	-5.31E-03		
Contribution to eutrophication, terrestrial	mol N eq	8.03E+00	5.37E-01	1.75E-01	1.04E-02	7.27E+00	4.38E-02	-5.55E-02		
Contribution to photochemical ozone formation - human health	kg COVNM eq	1.69E+00	1.76E-01	5.84E-02	2.40E-03	1.44E+00	1.15E-02	-2.43E-02		
Contribution to resource use, minerals and metals	kg Sb eq	5.02E-03	4.78E-03	0*	0*	2.40E-04	0*	-1.61E-03		
Contribution to resource use, fossils	MJ	1.87E+04	8.00E+02	1.07E+02	1.07E+01	1.77E+04	4.54E+01	-9.15E+01		
Contribution to water use	m3 eq	7.56E+01	1.83E+01	4.36E-01	1.00E-01	5.61E+01	6.47E-01	-7.04E+00		

ENVPEP2412049_V2 07/2025

Inventory flows Indicators	Easy PDU Metered Zero U 32A 230V (20)C13 (4)C19 IEC309 - EPDU2132M									
Inventory flows	Unit	Total (without Module D)	[A1 - A3] - Manufacturing	[A4] - Distribution	[A5] - Installation	[B1 - B7] - Use	[C1 - C4] - End of life	[D] - Benefits and loads		
Contribution to renewable primary energy used as energy	MJ	4.19E+03	2.83E+01	0*	1.48E+00	4.16E+03	2.25E+00	3.59E-01		
Contribution to renewable primary energy used as raw material	MJ	2.04E+01	2.04E+01	0*	0*	0*	0*	-1.48E+01		
Contribution to total renewable primary energy	MJ	4.21E+03	4.87E+01	0*	1.48E+00	4.16E+03	2.25E+00	-1.44E+01		
Contribution to non renewable primary energy used as energy	MJ	1.87E+04	7.51E+02	1.07E+02	1.07E+01	1.77E+04	4.54E+01	-9.15E+01		
Contribution to non renewable primary energy used as raw material	MJ	4.89E+01	4.89E+01	0*	0*	0*	0*	0.00E+00		
Contribution to total non renewable primary energy	MJ	1.87E+04	8.00E+02	1.07E+02	1.07E+01	1.77E+04	4.54E+01	-9.15E+01		
Contribution to use of secondary material	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to use of renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to use of non renewable secondary fuels	MJ	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to net use of fresh water	m³	1.77E+00	4.25E-01	1.02E-02	7.42E-03	1.31E+00	1.75E-02	-1.64E-01		
Contribution to hazardous waste disposed	kg	1.19E+02	9.73E+01	0*	2.86E-02	2.04E+01	1.02E+00	-1.22E+02		
Contribution to non hazardous waste disposed	kg	1.73E+02	5.79E+01	0*	4.98E-01	1.12E+02	2.95E+00	-2.17E+00		
Contribution to radioactive waste disposed	kg	5.18E-02	2.34E-02	1.71E-03	7.22E-05	2.63E-02	2.87E-04	-1.08E-03		
Contribution to components for reuse	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to materials for recycling	kg	2.46E+00	1.57E-01	0*	8.20E-01	0*	1.48E+00	0.00E+00		
Contribution to materials for energy recovery	kg	0.00E+00	0*	0*	0*	0*	0*	0.00E+00		
Contribution to exported energy	MJ	5.69E-02	1.61E-03	0*	4.36E-02	0*	1.17E-02	0.00E+00		

^{*} represents less than 0.01% of the total life cycle of the reference flow

Contribution to biogenic carbon content of the product	kg of C	0.00E+00
Contribution to biogenic carbon content of the associated packaging	kg of C	2.80E-01

^{*} The calculation of the biogenic carbon is based on the Ademe for the Cardboard (28%), EN16485 for Wood (39,52%), and APESA/RECORD for Paper (37,8%)

Mandatory Indicators	Easy PDU Metered Zero U 32A 230V (20)C13 (4)C19 IEC309 - EPDU2132M								
Impact indicators	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to climate change	kg CO2 eq	7.40E+02	0*	0*	0*	0*	0*	7.40E+02	0*
ontribution to climate change-fossil	kg CO2 eq	7.24E+02	0*	0*	0*	0*	0*	7.24E+02	0*
ontribution to climate change-biogenic	kg CO2 eq	1.63E+01	0*	0*	0*	0*	0*	1.63E+01	0*
ntribution to climate change-land use and land use ange	kg CO2 eq	0*	0*	0*	0*	0*	0*	0*	0*
tribution to ozone depletion	kg CFC-11 ea	3.17E-06	0*	0*	0*	0*	0*	3.17E-06	0*
ribution to acidification	mol H+ eq	3.87E+00	0*	0*	0*	0*	0*	3.87E+00	0*
ribution to eutrophication, freshwater	kg P eq	1.77E-03	0*	0*	0*	0*	0*	1.77E-03	0*
ribution to eutrophication marine	kg N eq	4.53E-01	0*	0*	0*	0*	0*	4.53E-01	0*
ibution to eutrophication, terrestrial	mol N eq	7.27E+00	0*	0*	0*	0*	0*	7.27E+00	0*
bution to photochemical ozone formation - human	kg COVNM eq	1.44E+00	0*	0*	0*	0*	0*	1.44E+00	0*
tribution to resource use, minerals and metals	kg Sb eq	2.40E-04	0*	0*	0*	0*	0*	2.40E-04	0*
ibution to resource use, fossils	MJ	1.77E+04	0*	0*	0*	0*	0*	1.77E+04	0*
ibution to water use	m3 eq	5.61E+01	0*	0*	0*	0*	0*	5.61E+01	0*

ENVPEP2412049_V2 07/2025

Inventory flows Indicators	Easy PDU Metered Zero U 32A 230V (20)C13 (4)C19 IEC309 - EPDU2132M								
Inventory flows	Unit	[B1 - B7] - Use	[B1]	[B2]	[B3]	[B4]	[B5]	[B6]	[B7]
Contribution to use of renewable primary energy excluding enewable primary energy used as raw material	MJ	4.16E+03	0*	0*	0*	0*	0*	4.16E+03	0*
contribution to use of renewable primary energy resources sed as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
contribution to total use of renewable primary energy esources	MJ	4.16E+03	0*	0*	0*	0*	0*	4.16E+03	0*
contribution to use of non renewable primary energy xcluding non renewable primary energy used as raw naterial	MJ	1.77E+04	0*	0*	0*	0*	0*	1.77E+04	0*
ontribution to use of non renewable primary energy esources used as raw material	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to total use of non-renewable primary energy sources	MJ	1.77E+04	0*	0*	0*	0*	0*	1.77E+04	0*
ontribution to use of secondary material	kg	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to use of renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to use of non renewable secondary fuels	MJ	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to net use of freshwater	m³	1.31E+00	0*	0*	0*	0*	0*	1.31E+00	0*
ontribution to hazardous waste disposed	kg	2.04E+01	0*	0*	0*	0*	0*	2.04E+01	0*
ontribution to non hazardous waste disposed	kg	1.12E+02	0*	0*	0*	0*	0*	1.12E+02	0*
ontribution to radioactive waste disposed	kg	2.63E-02	0*	0*	0*	0*	0*	2.63E-02	0*
ntribution to components for reuse	kg	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to materials for recycling	kg	0*	0*	0*	0*	0*	0*	0*	0*
ntribution to materials for energy recovery	kg	0*	0*	0*	0*	0*	0*	0*	0*
ontribution to exported energy	MJ	0*	0*	0*	0*	0*	0*	0*	0*

^{*} represents less than 0.01% of the total life cycle of the reference flow

Life cycle assessment performed with EIME version v6.2.4, database version 2025-04 in compliance with ISO14044, EF3.1 method is applied, for biogenic carbon storage, assessment methodology -1/1 is used

According to this environmental analysis, proportionality rules may be used to evaluate the impacts of other products of this range, ratios to apply can be provided upon request

Please note that the values given above are only valid within the context specified and cannot be used directly to draw up the environmental assessment of an installation.

Registration number :	ENVPEP2412049_V2	Drafting rules PEP-PCR-ed4-2021 09 06							
		Supplemented by PSR-0005-ed3.1-EN-2023 12 08							
Date of issue	07-2025	Information and reference documents www.pep-ecopassport.org							
		Validity period 5 years							
Independent verification of	the declaration and data, in compliance with ISO 14021 : 2016								
Internal X External									
The PCR review was conducted by a panel of experts chaired by Julie Orgelet (DDemain)									
PEPs are compliant with XP C08-100-1:2016 and EN 50693:2019 or NF E38-500 :2022									
The components of the present PEP may not be compared with components from any other program.									

Document complies with ISO 14021:2016 "Environmental labels and declarations. Type II environmental declarations"

Schneider Electric Industries SAS

Country Customer Care Center http://www.se.com/contact

Head Office 35, rue Joseph Monier CS 30323

F- 92500 Rueil Malmaison Cedex RCS Nanterre 954 503 439

Capital social 928 298 512 €

www.se.com ENVPEP2412049_V2 Published by Schneider Electric
©2024 - Schneider Electric – All rights reserved

07/2025