•addon

and the second s

MMS4X00-NM-AO

Mellanox[®] MMS4X00-NM Compatible TAA 800GBase-DR8 PAM4 OSFP Transceiver (SMF, 1310nm, 500m, 2xMPO, DOM, CMIS 5.0)

Features

- OSFP MSA Compliant
- Supports 850Gbps
- 8x53.125GBd (PAM4) Electrical Interface
- Compliant with IEEE 802.3cu-2021: 8x100GBASE-DR optical interface
- Compliant with IEEE 802.3ck-2022: 8x100GAUI-1 C2M electrical interface
- Support both Ethernet and InfiniBand NDR
- EML transmitter and PIN PD receiver
- Commercial Temperature: 0 to 70 Celsius
- Class 1 Laser
- Dual MPO-12 Connector APC
- RoHS Compliant and Lead-Free

Applications

- 2x400GBase Ethernet
- 8x100GBase Ethernet

Product Description

This Mellanox[®] MMS4X00-NM compatible OSFP transceiver provides 800GBase-DR8 throughput up to 500m over single-mode fiber (SMF) using a wavelength of 1310nm via a 2xMPO connector. It is guaranteed to be 100% compatible with the equivalent Mellanox[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

AddOn's transceivers are RoHS compliant and lead-free.

TAA refers to the Trade Agreements Act (19 U.S.C. & 2501-2581), which is intended to foster fair and open international trade. TAA requires that the U.S. Government may acquire only "U.S. – made or designated country end products."

Rev. 032224

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	-0.5		3.6	V	
Storage Temperature	Tstg	-40		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity (non-condensing)	RH	5		95	%	
Data Input Voltage Differential	VDIP-VDIN			1	V	
Control Input Voltage	VI	-0.3		VCC+0.5	V	
Control Output Current	10	-20		20	mA	
Signaling Speed per Lane	DRL		53.125		GBd	
Operating Distance		2		500	m	

Notes:

1. Exceeding the Absolute Maximum Ratings table may cause permanent damage to the device. This is just an emphasized rating and does not involve the functional operation of the device that exceeds the specifications of this technical specification under these or other conditions. Long-term operation under Absolute Maximum Ratings will affect the reliability of the device.

Electrical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage		Vcc	3.135	3.3	3.465	V	
Instantaneous peak cu	rrent at hot plug	ICC_IP			6600	mA	
Sustained peak curren	t at hot plug	ICC_SP			5494.5	mA	
Maximum Power Dissi	pation	PD			16.5	W	
Maximum Power Dissi	pation, Low Power Mode	PDLP			2	W	
Control Input Voltage	High	VIH	VCC*0.7		VCC+0.3	V	
Control Input Voltage	Control Input Voltage Low		-0.3		VCC*0.3	V	
Two Wire Serial Interf	Two Wire Serial Interface Clock Rate				400	kHz	
Power Supply Noise 1	kHz - 1 MHz (p-p)				66	mVpp	
High-Speed Electrical Tr	ansmitter Characteristics (TI	P1)	1	1	1		
Differential Peak-Peak In	nput Voltage Tolerance		750			mV	
Peak-to-Peak AC	Low-frequency, VCM _{LF}				32	mV	
Common-Mode Voltage Tolerance	Full-band, VCM _{FB}				80	mV	
Differential-mode to common-mode return loss		RLcd	802.3ck 120)G-2		dB	
Effective return loss	Effective return loss		8.5			dB	
Differential terminatio	Differential termination mismatch				10	%	

Single-ended voltage t		-0.4		3.3	V		
DC common-mode vol		-0.35		2.85	V		
High-Speed Electrical Re	eceiver Characteristics (TP4)						
Peak-to-Peak AC	Low-frequency, VCM _{LF}				32	mV	
Common-Mode Voltage	Full-band, VCM _{FB}				80	mV	
Differential Peak-to-	Short Mode				600	mV	
Peak Output Voltage	Long Mode				845	mV	
Eye height		EH	15			mV	
Vertical eye closure		VEC			12	dB	
Common-mode to diffe	erential-mode return loss	RLDc	802.3ck 120G-1			dB	
Effective return loss	Effective return loss		8.5			dB	
Differential termination mismatch					10	%	
Transition time			8.5			ps	
DC common-mode voltage tolerance			-0.35		2.85	V	

Notes:

1. Compliant with IEEE802.3ck C2M.

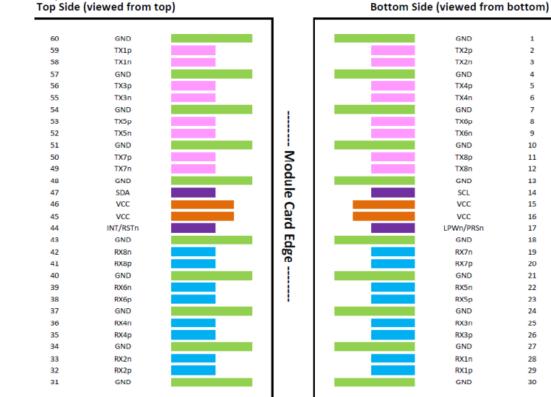
Electrical Low Speed Control and Sense Signals Specifications

Parameter	Symbol	Min.	Max.	Unit	Notes
Module output SCL and SDA	VOL	0	0.4	V	
Module Input SCL and SDA	VIL	-0.3	VCC*0.3	V	
	VIH	VCC*0.7	VCC+0.5	V	
InitMode, ResetL and ModSelL	VIL	-0.3	0.8	V	
	VIH	2	VCC+0.3	V	
IntL	VOL	0	0.4	V	
	VOH	VCC-0.5	VCC+0.3	V	

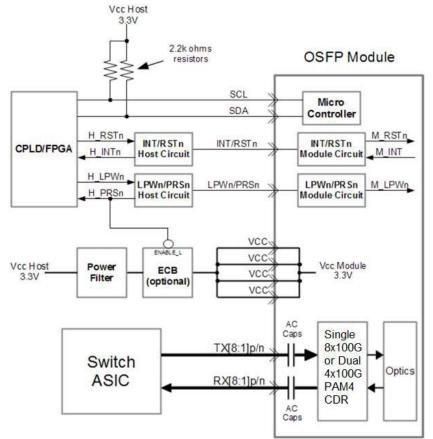
Optical Characteristics

Parameter		Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter							
Wavelength		λC	1304.5	1311	1317.5	nm	
Side Mode Sup	pression Ratio	SMSR	30			dB	
Average Launc	h Power, each lane	AOPL	-2.9		4.0	dBm	1
Outer Optical I (OMAouter), ea	Vodulation Amplitude ach Lane	ТОМА	-0.8		4.2	dBm	
Launch power in OMAouter	for extinction ratio >= 5dB	TOMA-TDECQ	-2.2			dBm	
Minus TDECQ, each lane	for extinction ratio < 5dB	TOMA-TDECQ	-1.9			dBm	
	d Dispersion Eye Closure	TDECQ			3.4	dB	
for PAM4 (TDE	CQ), each lane 10(Ceq), each lane	Ceq			3.4	dB	
Average Launc Transmitter, ea	h Power of OFF ach lane	TOFF			-15	dBm	
Extinction Ratio		ER	3.5			dB	
Transmitter Tra	ansition Time	Tr			17	ps	
RIN _{15.5} OMA		RIN			-136	dB/Hz	
Optical Return	Loss Tolerance	ORL			15.5	dB	
Transmitter Re	flectance	TR			-26	dB	2
Receiver							
Wavelength		λC0	1304.5	1311	1317.5	nm	
Damage Thres	hold, each Lane	AOP _D	5			dBm	
Average Receiv	ve Power, each Lane	AOP _R	-5.9		4	dBm	
Receive Power	(OMAouter), each Lane	OMA _R			4.2	dBm	
Receiver Reflec	ctance	RR			-26	dB	
Receiver Sensitivity (OMAouter), each Lane		Soma			Max (–3.9, SECQ – 5.3)	dBm	3
Stressed Receiver Sensitivity (OMAouter), each Lane					-1.9	dBm	4
Conditions of S	Stressed Receiver Sensitivit						
Stressed Eye Closure for PAM4 (SECQ), Lane Under Test		SECQ		3.4		dB	
SECQ – 10log10) (Ceq), Lane Under Test	Ceq			3.4	dB	

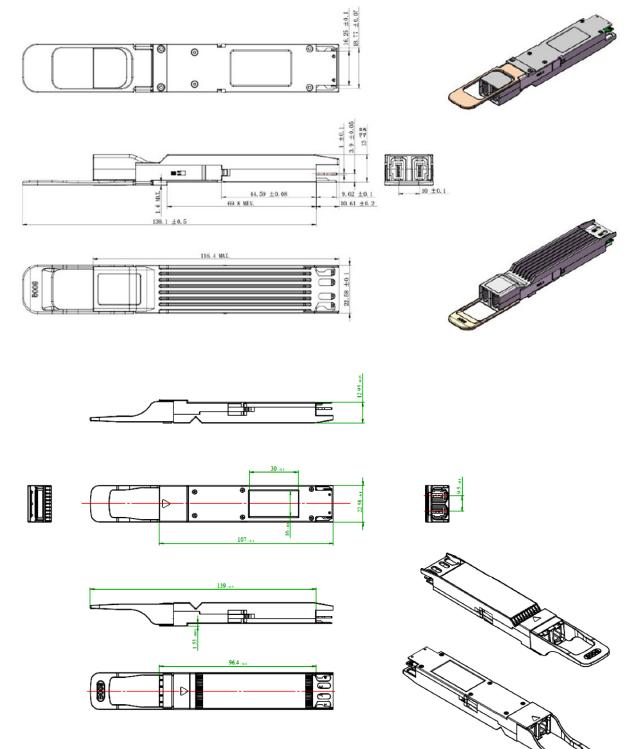
Notes:


- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength.
- 2. Transmitter reflectance is defined looking into the transmitter.
- 3. Receiver sensitivity (OMAouter), each lane (max) is informative and is defined for a transmitter with a value of SECQ up to 3.4dB.
- 4. Measured with conformance test signal at TP3 for the BER = 2.4×10^{-4} .

Pin Descriptions


Pin	Logic	Symbol	Name/Description	Notes
1		GND	Module Ground.	
2	CML-I	Tx2+	Transmitter Non-Inverted Data.	
3	CML-I	Tx2-	Transmitter Inverted Data.	
4		GND	Module Ground.	
5	CML-I	Tx4+	Transmitter Non-Inverted Data.	
6	CML-I	Tx4-	Transmitter Inverted Data.	
7		GND	Module Ground.	
8	CML-I	Tx6+	Transmitter Non-Inverted Data.	
9	CML-I	Тх6-	Transmitter Inverted Data.	
10		GND	Module Ground.	
11	CML-I	Tx8+	Transmitter Non-Inverted Data.	
12	CML-I	Tx8-	Transmitter Inverted Data.	
13		GND	Module Ground.	
14	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock.	
15		Vcc	+3.3V Power Supply.	
16		Vcc	+3.3V Power Supply.	
17	Multi-Level	LPWn/PRSn	Low-Power Mode/Module Present.	
18		GND	Module Ground.	
19	CML-0	Rx7-	Receiver Inverted Data.	
20	CML-0	Rx7+	Receiver Non-Inverted Data.	
21		GND	Module Ground.	
22	CML-0	Rx5-	Receiver Inverted Data.	
23	CML-O	Rx5+	Receiver Non-Inverted Data.	
24		GND	Module Ground.	
25	CML-O	Rx3-	Receiver Inverted Data.	
26	CML-0	Rx3+	Receiver Non-Inverted Data.	
27		GND	Module Ground.	
28	CML-O	Rx1-	Receiver Inverted Data.	
29	CML-O	Rx1+	Receiver Non-Inverted Data.	
30		GND	Module Ground.	
31		GND	Module Ground.	
32	CML-O	Rx2+	Receiver Non-Inverted Data.	
33	CML-O	Rx2-	Receiver Inverted Data.	
34		GND	Module Ground.	
35	CML-O	Rx4+	Receiver Non-Inverted Data.	

36	CML-0	Rx4-	Receiver Inverted Data.
37		GND	Module Ground.
38	CML-0	Rx6+	Receiver Non-Inverted Data.
39	CML-O	Rx6-	Receiver Inverted Data.
40		GND	Module Ground.
41	CML-O	Rx8+	Receiver Non-Inverted Data.
42	CML-O	Rx8-	Receiver Inverted Data.
43		GND	Module Ground.
44	Multi-Level	INT/RSTn	Module Input/Module Reset.
45		Vcc	+3.3V Power Supply.
46		Vcc	+3.3V Power Supply.
47	LVCMOS-I/O	SDA	2-Wire Serial Interface Data.
48		GND	Module Ground.
49	CML-I	Tx7-	Transmitter Inverted Data.
50	CML-I	Tx7+	Transmitter Non-Inverted Data.
51		GND	Module Ground.
52	CML-I	Tx5-	Transmitter Inverted Data.
53	CML-I	Tx5+	Transmitter Non-Inverted Data.
54		GND	Module Ground.
55	CML-I	Tx3-	Transmitter Inverted Data.
56	CML-I	Tx3+	Transmitter Non-Inverted Data.
57		GND	Module Ground.
58	CML-I	Tx1-	Transmitter Inverted Data.
59	CML-I	Tx1+	Transmitter Non-Inverted Data.
60		GND	Module Ground.


Electrical Pad Layout

Recommended OSFP Host board Schematic

Mechanical Specifications

*Note: Both Heat Sink Exposed and Heat Sink Enclosed styles are OSFP Type 2 Compliant. Images are for Illustration purposes only. Product Labels, colors, and style may vary.

About AddOn Networks

In 1999, AddOn Networks entered the market with a single product. Our founders fulfilled a severe shortage for compatible, cost-effective optical transceivers that compete at the same performance levels as leading OEM manufacturers. Adhering to the idea of redefining service and product quality not previously had in the fiber optic networking industry, AddOn invested resources in solution design, production, fulfillment, and global support.

Combining one of the most extensive and stringent testing processes in the industry, an exceptional free tech support center, and a consistent roll-out of innovative technologies, AddOn has continually set industry standards of quality and reliability throughout its history.

Reliability is the cornerstone of any optical fiber network and is in engrained in AddOn's DNA. It has played a key role in nurturing the long-term relationships developed over the years with customers. AddOn remains committed to exceeding industry standards with certifications from ranging from NEBS Level 3 to ISO 9001:2005 with every new development while maintaining the signature reliability of its products.

U.S. Headquarters

Email: sales@addonnetworks.com

Telephone: +1 877.292.1701

Fax: 949.266.9273

Europe Headquarters

Email: salessupportemea@addonnetworks.com

Telephone: +44 1285 842070